3-Dimensional Matrix Class
|
const matrix3d | adjoint () const |
| calculate the adjoint of a 3x3 matrix More...
|
|
const scalar | determinant () const |
|
void | identity () |
|
const matrix3d | inverse () const |
| calculate the inverse of a 3x3 matrix More...
|
|
void | transpose () |
|
void | zero () |
|
|
| matrix3d () |
|
| matrix3d (const vector3d &c0, const vector3d &c1, const vector3d &c2) |
|
| matrix3d (scalar m11, scalar m12, scalar m13, scalar m21, scalar m22, scalar m23, scalar m31, scalar m32, scalar m33) |
|
| matrix3d (const scalar *m) |
|
|
scalar & | operator() (int i, int j) |
|
const scalar & | operator() (int i, int j) const |
|
const vector3d | operator* (const vector3d &v) const |
|
const matrix3d & | operator+= (const matrix3d &b) |
|
const matrix3d & | operator-= (const matrix3d &b) |
|
const matrix3d & | operator*= (const matrix3d &b) |
|
const matrix3d & | operator*= (const scalar &s) |
|
const matrix3d | operator+ (const matrix3d &m) const |
|
const matrix3d | operator- (const matrix3d &m) const |
|
const matrix3d | operator* (const matrix3d &m) const |
|
const matrix3d math::matrix3d::adjoint |
( |
| ) |
const |
calculate the adjoint of a 3x3 matrix
Calculate the caller's adjoint matrix. Given a square matrix 'A', where 'C[i,j]' is the cofactor of 'a[i,j]', then the matrix:
\[ \left[ \begin{array}{cccc} C_{11} & C_{12} & ... & C_{1n}\\ C_{21} & C_{22} & ... & C_{2n}\\ : & : & & :\\ C_{n1} & C_{n2} & ... & C_{nn} \end{array} \right] \]
is the 'matrix of cofactors from A'. The transpose of this matrix is the 'adjoint of A'.
- Return values
-
References _m11, _m12, _m13, _m21, _m22, _m23, _m31, _m32, _m33, math::det(), and matrix3d().