Microchip® Advanced Software Framework

math::quaternion Class Reference

4-dimensional normed division algebra over the Real Numbers

Every quaternion is uniquely expressible as a Real linear combination of basis quaternions \( 1, i, j, k \) satisfying the relation:

\[ i^{2} = j^{2} = k^{2} = ijk = -1 \label{ eq. 1 } \]

Quaternions satisfy vector space axioms over the Reals. The set \( \mathbf{H} \) of all quaternions has dimension 4. However, unlike Real and Complex numbers, multiplication of quaternions is not commutative. However, multiplication associates, and every non-zero element has a unique inverse.

The set of equations (eq. 1) is the fundamental formula for quaternion multiplication. The multiplication table of basis quaternions is easily derived from the relation \( ijk = -1 \).

Given quaternion set \( \mathbf{H} \), Real scalars \( a, b, c, d \), and quaternion \( z = a + bi + cj + dk \) the following additional definitions apply:

  • Conjugate of \( \mathit{z} \) is \( z^{*} = a - bi - cj - dk \)
  • Absolute value (magnitude) of \( \mathit{z} \) is the non-negative Real scalar value

    \[ \vert z \vert = (zz^{*})^{\frac{1}{2}} = \sqrt{a^{2} + b^{2} + c^{2} + d^{2}} \]

  • Multiplicative inverse (reciprocal) \( \mathit{z} \) can be computed as

    \[ \frac{1}{z} = \frac{z^{*}}{\vert z\vert^{2}} = \frac{z^{*}}{zz^{*}} \]

  • Given two distinct quaternions, \( q_1 = (a + \vec{u}) \) and \( q_2 = (b + \vec{v}) \), the product is not generally commutable and is defined as

    \[ q_1 q_2 = (ab - \langle \vec{u}, \vec{v} \rangle) + (a\vec{v} + b\vec{u} + \vec{u} \times \vec{v}) \]

  • Let \( z = \cos{(\frac{\alpha}{2})} + \sin{(\frac{\alpha}{2})}\vec{U} \) be a unit quaternion. The mapping \( f(\vec{x}) = z\vec{x}z^{*} \) is known as conjugation by \( \mathit{z}, \) where the vector \( \vec{x} \) is considered a quaternion with its scalar component equal to zero. \( f(\vec{x}) \) rotates \( \vec{x} \) counterclockwise through an angle \( \alpha \) about an axis \( \vec{U} \). The composition of two rotations corresponds to quaternion multiplication.

#include <quaternion.h>

Public Member Functions

const bool operator!= (const quaternion &q) const
 
const quaternion operator* (const quaternion &q) const
 quaternion multiplication (Grassmann Product) More...
 
const quaternion operator* (const scalar &s) const
 
const quaternion operator+ (const quaternion &q) const
 
const quaternion operator- (const quaternion &q) const
 
const quaternion operator/ (const scalar &s) const
 
const bool operator== (const quaternion &q) const
 
class construction and type conversion
 quaternion ()
 
 quaternion (const scalar &s, const vector3d &v)
 
 quaternion (const scalar &q1, const scalar &q2, const scalar &q3, const scalar &q4)
 
class public methods

/**

const quaternion conjugate () const
 
const vector3d cross (const quaternion &q) const
 
const scalar dot (const quaternion &q) const
 dot-product (Euclidean inner-product) More...
 
const scalar length () const
 modulus (absolute value or length from origin) More...
 
void normalize ()
 
const quaternion unit () const
 
const scalarScalar () const
 
const vector3dVector () const
 
const quaternion sgn () const
 Sign, sgn(z), of a complex number finds the complex number of the same direction found on the unit circle. More...
 
const scalar arg () const
 Argument, arg(z), finds the angle of the 4-vector quaternion from the unit scalar (i.e. More...
 
class member operators
const quaternionoperator*= (const quaternion &q)
 
const quaternionoperator+= (const quaternion &q)
 
const quaternionoperator-= (const quaternion &q)
 
const quaternionoperator*= (const scalar &s)
 
const quaternionoperator/= (const scalar &s)
 

Friends

const quaternion operator* (const scalar &s, const quaternion &q)
 
const quaternion operator- (const quaternion &q)
 

math::quaternion::quaternion ( )
inline
math::quaternion::quaternion ( const scalar s,
const vector3d v 
)
inline
math::quaternion::quaternion ( const scalar q1,
const scalar q2,
const scalar q3,
const scalar q4 
)
inline

const scalar math::quaternion::arg ( ) const
inline

Argument, arg(z), finds the angle of the 4-vector quaternion from the unit scalar (i.e.

1).

const quaternion math::quaternion::conjugate ( ) const
inline
const vector3d math::quaternion::cross ( const quaternion q) const
inline
const scalar math::quaternion::dot ( const quaternion q) const
inline

dot-product (Euclidean inner-product)

const scalar math::quaternion::length ( ) const
inline

modulus (absolute value or length from origin)

void math::quaternion::normalize ( )
inline
const bool math::quaternion::operator!= ( const quaternion q) const
inline
const quaternion math::quaternion::operator* ( const quaternion q) const
inline

quaternion multiplication (Grassmann Product)

const quaternion math::quaternion::operator* ( const scalar s) const
inline
const quaternion& math::quaternion::operator*= ( const quaternion q)
inline
const quaternion& math::quaternion::operator*= ( const scalar s)
inline
const quaternion math::quaternion::operator+ ( const quaternion q) const
inline
const quaternion& math::quaternion::operator+= ( const quaternion q)
inline
const quaternion math::quaternion::operator- ( const quaternion q) const
inline
const quaternion& math::quaternion::operator-= ( const quaternion q)
inline
const quaternion math::quaternion::operator/ ( const scalar s) const
inline
const quaternion& math::quaternion::operator/= ( const scalar s)
inline
const bool math::quaternion::operator== ( const quaternion q) const
inline
const scalar& math::quaternion::Scalar ( ) const
inline
const quaternion math::quaternion::sgn ( ) const
inline

Sign, sgn(z), of a complex number finds the complex number of the same direction found on the unit circle.

const quaternion math::quaternion::unit ( ) const
inline
const vector3d& math::quaternion::Vector ( ) const
inline

const quaternion operator* ( const scalar s,
const quaternion q 
)
friend
const quaternion operator- ( const quaternion q)
friend